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SUMMARY

This paper describes the use of an a posteriori error estimator to control anisotropic mesh adaptation for
computing inviscid compressible flows. The a posteriori error estimator and the coupling strategy with
an anisotropic remesher are first introduced. The mesh adaptation is controlled by a single-parameter
tolerance (TOL) in regions where the solution is regular, whereas a condition on the minimal element
size hmin is enforced across solution discontinuities. This hmin condition is justified on the basis of an
asymptotic analysis. The efficiency of the approach is tested with a supersonic flow over an aircraft. The
evolution of a mesh adaptation/flow solution loop is shown, together with the influence of the parameters
TOL and hmin. We verify numerically that the effect of varying hmin is concordant with the conclusions
of the asymptotic analysis, giving hints on the selection of hmin with respect to TOL. Finally, we check
that the results obtained with the a posteriori error estimator are at least as accurate as those obtained
with anisotropic a priori error estimators. All the results presented can be obtained using a standard
desktop computer, showing the efficiency of these adaptative methods. Copyright q 2008 John Wiley &
Sons, Ltd.
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1. INTRODUCTION

Anisotropic mesh adaptation has proved to be a powerful strategy to improve the quality and
efficiency of compressible flow simulations, at first mostly for 2D flows [1–4]. These anisotropic
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mesh adaptation techniques were initially based on a metric derived from a numerical approximation
of the Hessian of the solutions with, in the background, the use of an a priori error estimator [5, 6].
The main idea behind the use of such metrics originates from the problem of finding the optimal
mesh with a prescribed number of nodes, which minimizes the interpolation error of a given function
[7, 8]. More recently, these a priori error estimators were used to drive unstructured mesh adaptation
for 3D flows [9–11] and 3D phase change problems [12], just to name a few applications. For all
these applications, sharp fronts, e.g. shocks in compressible flows or solidification interfaces, are
meshed with high aspect ratio tetrahedra, allowing the computation of very accurate solutions with
a minimal number of elements. These a priori error estimators successfully carry over to inviscid
flows with shocks in spite of the fact that theoretically these estimates involve the Hessian of the
exact solution, which is not regular. Practically, for these inviscid flows, flow solvers approximate
regularized solutions (because of the artificial viscosity) with properly defined second derivatives
that can be reconstructed with a recovery technique [13].

Following these works on metric-based anisotropic mesh adaptation, several anisotropic a poste-
riori error estimators were derived [14–20] and used to drive anisotropic mesh adaptation for a
variety of problems in fluid dynamics, heat transfer and solidification [21–25]. These anisotropic
a posteriori error estimators also turned out to be effective, although their complete mathematical
justification and application were done only for problems involving second-order partial differ-
ential equations (PDEs). The extension of a posteriori error estimators to first-order PDEs is far
from trivial. A limited number of attempts were done to obtain a posteriori estimators for first-
order hyperbolic PDEs, for the pure advection equation [26], linear symmetric hyperbolic systems
[27, 28], nonlinear scalar hyperbolic equations [29, 30], 1D nonlinear hyperbolic systems [31] and
multi-dimensional nonlinear hyperbolic systems [32]. An estimator was proposed and tested for the
linearized Euler equations for compressible flows [33]. A common feature of all these a posteriori
error estimators for hyperbolic PDEs is that they are isotropic, in the sense that the orientation and
shape of the elements are not accounted for in the estimators. Their modification into anisotropic
estimators does not seem to be achievable. Moreover, aside from limited 2D test cases in [33], the
practical efficiency at computing inviscid compressible flows of a posteriori error estimators, both
in the isotropic and in the anisotropic cases, has not been looked at yet.

It is the purpose of this paper to look at the efficiency of an anisotropic a posteriori error
estimator to compute 3D inviscid flows with shocks. We ought to show that in spite of its firm
mathematical foundation for elliptic and parabolic equations only, anisotropic a posteriori error
estimators can perform very well for inviscid flows when properly used. To reach our goal, we use
the most recent anisotropic a posteriori error estimators of Picasso [20]. The goal of the project is
to develop simulation capabilities for complex 3D external flows that run on simple workstations
in a limited time and with limited memory.

This paper is organized as follows. Section 2 covers the numerical methods. The flow solver is
based on a vertex-centered finite-volume method presented in [34]. We next present our a posteriori
error estimator, and how it is coupled with the mesh adaptation software. An asymptotic analysis
is then presented to assess the behavior of our a posteriori estimator when computing solutions
with discontinuities. Section 3 presents numerical results. The test case is first detailed. All the
simulations are based on the same external flow around a supersonic aircraft. The anisotropic
adapted meshes are obtained within a solver/mesher loop using the mmg3d mesh adaptation
software [35]. This software implements the local mesh modification techniques presented in [6].
After documenting this solver/mesher loop, the impact of the two main adaptation parameters
associated with our a posteriori estimator is analyzed. We finish this section by briefly comparing
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our solutions with those obtained through the latest a priori error estimators developed in [13].
Section 4 presents the conclusions of our analysis.

2. NUMERICAL METHODS

2.1. Flow solver

We consider the set of Euler equations to model the flow. Assuming that the gas is perfect,
nonviscous and that there is no thermal diffusion, the Euler equations for mass, momentum and
energy conservation read

��

�t
+∇(�U)=0

�(�U)

�t
+∇(�U⊗U)+∇ p=0

�(�E)

�t
+∇((�E+ p)U)=0

where � denotes the density, U the velocity vector, E=T +‖U‖2/2 the total energy and p=
(�−1)�T the pressure with �=1.4 the ratio of specific heat and T the temperature. These equations
could be symbolically rewritten as

�W
�t

+∇ ·F(W)=0

whereW=(�,�u,�v,�w,�E)T is the vector of conservative variables and the vector F represents
the convective flux.

The Euler system is solved by means of a finite-volume technique on unstructured tetrahedral
meshes [34, 36, 37]. The proposed scheme is vertex-centered and uses a particular edge-based
formulation with upwind elements. This formulation consists in associating each vertex Pi of the
mesh with a control volume or finite-volume cell Ci . The dual finite-volume cell mesh is built using
the rule of medians. The common boundary �Ci j =�Ci ∩�C j between two neighboring cells Ci
and C j is decomposed into several triangular interface facets. We apply the finite-volume method
to the Euler equations to obtain for each finite-volume cell Ci

|Ci |dWi

dt
+
∫

�Ci

F(Wi ) ·ni d�=0

whereWi is the mean value of the solutionW on the cell Ci . The integral containing the convective
flux F is computed by decomposing the cell boundary into its facets �Ci j and approximating the
exact flux by a numerical flux function, denoted by �i j∫

�Ci

F(Wn
i ) ·ni d�= ∑

Pj∈V(Pi )
F |Ii j ·

∫
�Ci j

ni d�= ∑
Pj∈V(Pi )

�i j (Wi ,W j ,ni j )

where V(Pi ) is the set of all neighboring vertices of Pi , ni is the outer normal of the cell
Ci , ni j =

∫
�Ci j

ni d� and F |Ii j represents the constant value of F(W) at the interface �Ci j . The
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numerical flux function approximates the convective terms on the common boundary �Ci j . This
flow solver utilizes the HLLC approximate Riemann solver to compute the numerical flux [38].

A high-order scheme is derived according to the monotone upwind schemes for conservation
laws (MUSCL) type method using downstream and upstream tetrahedra. This method provides a
rather easy and, importantly, inexpensive higher-order extension of monotone upwind schemes.
The idea is to use extrapolated values Wi j and W j i of W at the interface �Ci j to evaluate the
flux: �i j =�i j (Wi j ,W j i ,mi j ). To this end, we use a high-order gradient [39] (∇W)HOi j composed

of centered gradient (∇W)Ci j (i.e. the edge gradient) and upwind gradient (∇W)Di j (i.e. the upwind

element gradient): (∇W)HOi j = 2
3 (∇W)Ci j + 1

3 (∇W)Di j . This numerical flux approximation is proved
to be third order on a class of structured simplicial grids for linear advection.

Left as is, the scheme would not be monotone. The numerical flux needs to be limited to
guarantee the total variation diminishing (TVD) property of the scheme. The considered limiter is
a generalization of the Superbee limiter [36] with three entries

Lim(∇C,∇D,∇HO)=0 if ∇C∇D�0

Lim(∇C,∇D,∇HO)=Sign(∇C) min(2|∇C|,2|∇D|, |∇HO|) else

The time integration is an explicit time-stepping algorithm using a 5-stage, second-order strong-
stability-preserving Runge–Kutta scheme that allows us to consider a Courant–Friedrichs–Lewy
(CFL) coefficient of up to 4 [40].

With these features, the solver is then conservative, positivity-preserving and monotone
(TVD) [36].

2.2. A posteriori error estimator

Let us now introduce our a posteriori anisotropic error estimator that has been derived for elliptic
problems in [19, 20]. The goal is to obtain an error estimator for the H1(�) semi-norm of the true
error e=u−uh , namely ‖∇e‖L2(�). Here u and uh denote a generic variable and its numerical
approximate, respectively. This generic variable could be any of the variables appearing in the
flow vector W or a composite variable obtained from these. We will opt for the second choice and
use the local Mach number as variable uh to calculate the error estimator. We will show that, even
though the exact solution is not in H1(�), this error estimator can be efficiently used to guide mesh
adaptation and to obtain accurate numerical solutions. Our error estimator will be computable for
any numerical solution uh reading as a continuous P1 finite-element function on a given mesh
Th , obtained with a finite-element method or a cell-vertex finite-volume method. This will be
so, irrespective of whether or not the exact solution u contains discontinuities. Of course, some
justification and adjustment in the adaptation strategy will be required when the exact solution
loses its regularity. We will come back to that point in Section 2.4.

We use the notations of [14, 15] in order to describe the anisotropy of the mesh cells. The reader
should note that similar results can be found in [16, 41]. For any tetrahedra K of the mesh Th ,
let TK : K̂ →K be the affine transformation that maps the reference tetrahedra K̂ into K . Let MK
be the Jacobian of TK that is

x=TK (x̂)=MK x̂+tK
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As MK is invertible, it admits a singular value decomposition MK = RT
K�K PK , where RK and PK

are orthogonal matrices and where �K is diagonal with positive entries. In the following we set

�K =
⎛
⎜⎝

�1,K 0 0

0 �2,K 0

0 0 �3,K

⎞
⎟⎠ and RK =

⎛
⎜⎜⎝
rT1,K

rT2,K

rT3,K

⎞
⎟⎟⎠ (1)

with the choice �1,K��2,K��3,K . Geometrically, assuming that the reference tetrahedra K̂ can be
inscribed in a unit sphere, the singular value �i,K represents the length of the half-axis ri,K of the
ellipsoid circumscribing the tetrahedra K .

The flow solution uh satisfies the discrete systems Fh(uh)=0 obtained from an appropriate
discretization of the Euler equations F(u)=0.‡ The residual F(uh) is obtained by substituting
the numerical solution in the partial differential operator associated with the Euler equations. For
all tetrahedra K ∈Th , let fi , i=1,2,3,4, be the four faces of the tetrahedra K , let [·] denote the
jump of the bracketed quantity across fi , with the convention [·]=0 for a face fi on the boundary
��. Then, our error indicator on tetrahedra K is defined by

�2K =
(

‖F(uh)‖L2(K )+
1

2

4∑
i=1

( | fi |
�1,K �2,K �3,K

)1/2

‖[∇uh ·n]‖L2( fi )

)
�K (e) (2)

Here n is the face unit normal (in arbitrary direction), e is again the true error and �K (e) is
defined by

�2
K (e)=�21,K (rT1,KGK (e)r1,K )+�22,K (rT2,KGK (e)r2,K )+�23,K (rT3,KGK (e)r3,K ) (3)

where GK (e) denotes the 3×3 matrix defined by

GK (e)=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∫
�K

(
�e
�x1

)2

dx
∫

�K

�e
�x1

�e
�x2

dx
∫

�K

�e
�x1

�e
�x3

dx

∫
�K

�e
�x1

�e
�x2

dx
∫

�K

(
�e
�x2

)2

dx
∫

�K

�e
�x2

�e
�x3

dx

∫
�K

�e
�x1

�e
�x3

dx
∫

�K

�e
�x2

�e
�x3

dx
∫

�K

(
�e
�x3

)2

dx

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(4)

The patch �K is composed of the elements having at least one common vertex with the tetra-
hedra K .

Estimator (2) is not a usual error estimator since e=u−uh (and therefore u) is still involved.
However, if we can guess e, then Equation (2) can be used to derive a computable quantity. This
idea has been used in [19, 20] and an efficient anisotropic error indicator has also been obtained
replacing the derivatives

�e
�xi

in (4) by
�uh
�xi

−�h
�uh
�xi

, i=1,2,3 (5)

‡This F should not be confused with the flux F in the Euler equations.
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where �h is an approximate local L2(�) projection onto the linear finite-element space Vh . More
precisely, from constant values of �uh/�xi on tetrahedron, we build values at vertices P of the
mesh using the formula

�h

(
�uh
�xi

)
(P)= 1∑

K∈Th
P∈K

|K |
∑

K∈Th
P∈K

|K |
(

�uh
�xi

)
|K

, i=1,2,3 (6)

Approximating �e/�xi by (I −�h)�uh/�xi is at the basis of the Zienkiewicz–Zhu error estimator
[42, 43] and can be justified theoretically whenever superconvergence occurs, that is, when ∇u−
�h∇uh converges more rapidly to zero than ∇u−∇uh in L2(�). See [44–50] for theoretical
results on the asymptotic exactness and convergence properties of the Zienkiewicz–Zhu error
estimator. Numerical results show that the good properties of the Zienkiewicz–Zhu error estimator
are underestimated by theoretical results, at least for elliptic and parabolic equations [19, 20].

The error estimator defined in Equation (2) approaches the true error on the numerical solution
in the following sense:

C1
∑

K∈Th

�2K�‖∇e‖L2(�)�C2
∑

K∈Th

�2K (7)

These estimators are proved for an elliptic equation [19, 20] as soon as the solution u is more
regular than H1(�), namely u∈H1+�(�) for any �>0. The constant C2 is always size and aspect
ratio independent from the mesh, while the following equipartition condition is required for the
constant C1:

�21,K (rT1,KGK (e)r1,K )=�22,K (rT2,KGK (e)r2,K )=�23,K (rT3,KGK (e)r3,K ) (8)

on all tetrahedra. This equipartition condition is the cornerstone behind our adaptation strategy, as
will be detailed in Section 2.3.

From [41], it is known that face residuals dominate element residuals for finite-element methods
applied to elliptic problems. This is fully justified for the Laplace equation, on both isotropic
and anisotropic meshes. In [25] this has also been shown to work efficiently in practice for a 3D
nonlinear partly parabolic problem describing the dendritic growth of a binary alloy. We assume
that this is also valid for our problem and skip the residual term ‖F(uh)‖L2(K ) in the element
error estimator �K . This omission of the residual term makes the error �K independent, at least
formally, from the problem. This is a major gain as the computation of the element residual F(uh)
is tedious for nonlinear problems such as the Euler equations for compressible flows. All our
results presented below for the a posteriori error estimator have been obtained without the residual
term. The element error estimator then reads as

�2K = 1

2

4∑
i=1

( | fi |
�1,K �2,K �3,K

)1/2

‖[∇uh ·n]‖L2( fi ) �K (e) (9)

where �K (e) is defined by (3) and (4), and GK (e) is approximated from (5) and (6).
The Euler equations form a system of PDEs in five dependent variables. Although it is possible

to extend the a posteriori estimator to systems by taking linear combinations of the estimator in
each of the unknowns [21], we preferred to use a scalar ‘compound’ variable that varies in most
of the flow regions (shock waves, rarefaction fans, etc.). A common choice is to use for uh the
local Mach number, i.e. the ratio of the local flow speed over the local speed of sound. This choice
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of compound variable has been shown to be particularly efficient at catching most flow features
for inviscid, viscous and turbulent flows [3, 5, 34]. Other techniques are available for extending
anisotropic error estimators to systems such as metric intersection [2] and dual problem methods
[23]. These have not been pursued here.

2.3. Coupling of the error estimators with metric-based anisotropic mesh generators

We briefly recall the adaptive algorithm presented in [19, 20]. The goal is to build an anisotropic
mesh such that the estimated relative error is close to a preset tolerance, TOL, namely

0.75 TOL�
(
∑

K∈Th
�2K )1/2

‖∇uh‖L2(�)

�1.25 TOL (10)

A sufficient condition to ensure the above inequalities is to equidistribute the error estimator by
enforcing

0.752 TOL2‖∇uh‖2L2(�)

N
��2K�

1.252 TOL2‖∇uh‖2L2(�)

N
(11)

for all K ∈Th , where N is the number of tetrahedra in the meshTh . In practice, a mesh satisfying
(11) is built

• by equidistributing �K in the directions r1,K , r2,K and r3,K (controlling the directions of
stretching of the tetrahedra) so that (8) is satisfied;

• by aligning the tetrahedra K with the eigenvectors of the error gradient GK (e).

All the adapted meshes presented in this paper are generated using the mmg3d software [6, 35].
Anisotropic mesh generators, such as mmg3d, usually expect a metric tensor M=M(P) at each
node P of a background mesh. Metric tensors M are positive-definite matrices with eigenvectors
qi and respective eigenvalues �i , i=1,2,3. More precisely

M(P)=

⎛
⎜⎜⎝
q1T

q2T

q3T

⎞
⎟⎟⎠
⎛
⎜⎝

�1 0 0

0 �2 0

0 0 �3

⎞
⎟⎠(q1 q2 q3) (12)

We should have the relation �i =1/�2i between the eigenvalue �i of the metric tensor M and the
singular value �i of the matrix MK appearing in the affine transformation TK of Section 2.2, when
both values are reported at the nodes of the mesh.

Simply said, anisotropic mesh generators aim at producing ‘generalized anisotropic’ Delaunay
meshes with tetrahedra having edges of unit length in the metric [6]. In other words, the eigenvectors
qi control the orientation of the tetrahedron whereas 1/

√
�i represents the Euclidean width of the

element along qi . To interface our a posteriori error estimator with any anisotropic mesh generator,
we build a metric tensor at each node by setting qi =ri , with ri the eigenvectors of the error
gradient G(e) this time computed at each node, and by specifying the �i to iteratively achieve (11)
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through the strategy explained above. See [19, Section 3.2] for algorithmic details on the passage
from the element-based a posteriori error estimator to a metric tensor at the nodes.

2.4. Asymptotic analysis and minimal mesh size

The use of the a posteriori error estimator presented above cannot be theoretically justified for
solutions that are not at least in the space H1(�). Inviscid supersonic flows contain shock waves
and contact discontinuities, resulting in solutions u that are only in L p(�), 1�p�∞, but not in
H1(�). Using the a posteriori error estimator (9), the goal of the mesh adaptation is to obtain( ∑

K∈Th

�2K

)1/2

≈TOL ‖∇u‖L2(�) (13)

resulting in an error in O(TOL). By a simple asymptotic argument we wish to investigate the
impact of the solution regularity on the ability to achieve (10).

Let us first consider the case of a regular solution. When u∈H2(�), one easily derives an
asymptotic behavior in

∑
K∈Th

�2K ≈‖∇e‖2
L2(�)

=O(h2) from inequalities (7). To emphasize the
differences between regular and discontinuous solutions, let us evaluate the order of all the terms
in relation (10). We suppose that all tetrahedra K of the adapted mesh Th have a size �i,K =O(h)

along the three directions ri,K . There are thus O(h−3) tetrahedra. From [48, Theorem 4.1] we
obtain that G̃K =O(h5), where G̃K denotes the matrix GK (e) with the error ∇e approximated by
the Zienkiewicz–Zhu error estimator as in (5). Note that [48, Theorem 4.1] requires some more
regularity on the solution, i.e. u∈H3(�), and usual regularity assumptions on the mesh including
a minimal angle condition. Using again that �i,K =O(h), we deduce

�K (e)=
(

3∑
i=1

�2i,K (rTi,KGK (e)ri,K )

)1/2

=O(h7/2)

From a Taylor expansion the jump [∇uh ·n] is in O(h). We obtain

1

2

4∑
i=1

( | fi |
�1,K �2,K �3,K

)1/2

‖[∇uh ·n]‖L2( fi ) =O(h3/2)

hence �2K =O(h5). The mesh Th has O(h−3) isotropic tetrahedra; therefore∑
K∈Th

�2K =O(h2)

We recover the same asymptotic behavior as above. Now noticing that ‖∇uh‖L2(�) =‖∇u‖L2(�)+
O(h), we conclude that by imposing (10) while adapting the mesh in one way or another, we
control the semi-norm error ‖∇e‖L2(�) with the appropriate asymptotic rate when TOL→0.

We now turn to the case of less regular solutions. For steady inviscid flows, solution disconti-
nuities arise along fixed surfaces S j in �, allowing the definition of components �i on which the
solution is regular. We assume that these ‘regular’ components and the surfaces of discontinuity
cover the domain � in the sense that �=(∪i�i )∪(∪ j S j ). The error estimator �K should behave
on regular components �i as in the case of regular solutions analyzed above. Solutions to hyper-
bolic systems typically remain bounded in L∞(�) with finite jumps on the surfaces Si . At least
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this is what is observed in practice for many strictly hyperbolic systems and what is proven for
scalar hyperbolic equations [51, 52]. If the numerical solution uh happens to converge to the exact
solution u (say in some space L p(�)), then ∇uh is in L2(�) for continuous P1 finite-element
solutions uh and any finite h>0, but ∇uh does not converge in L2(�) as h→0. Thus, there is no
chance that the error ∇e can be controlled, a fortiori in L2(�), in the vicinity of the surfaces S j .
To avoid the blow-up of the semi-norm ‖∇uh‖L2(�) in the adaptation criteria (10), we limit from
below the singular values by imposing �i,K�hmin, for all i , on all tetrahedra K where this condition
is not met. In practice, this lower bound is restrictive only for �3,K and in rare occasions for �2,K .
The minimal mesh size hmin is chosen in such a way that on regular components �i , TOL is large
enough and hmin small enough for the condition on �i,K not to be enforced.

To analyze the asymptotic behavior of the error estimator for solutions with finite jumps on a
finite number of surfaces S j , consider a continuous P1 finite-element function uh taking different
constant values on both sides of a plane S cutting the domain �. A natural hypothesis for the
mesh Th is that the plane S is contained in a narrow band one-tetrahedra thick with a size
h :=hmin in the direction normal to the plane. This narrow band can be meshed in any intermediate
way between the following two extreme cases: (I) O(h−2) isotropic tetrahedra with �i,K =O(h),
i=1,2,3 and (II) O(1) anisotropic tetrahedra with �i,K =O(1), i=1,2, the directions r1,K and
r2,K being tangent to the plane S, and �3,K =O(h), the directions r3,K being normal to the plane
S. The two cases are illustrated in Figure 1. Studying these particular functions uh is sufficient to
estimate the leading order of the terms when applying the adaptation criteria (10) or (11).

We proceed with the analysis of Case I. The function uh then has a gradient ∇uh in O(h−1)

on the narrow band, zero elsewhere. It can be seen easily that �uh/�xi −�h�uh/�xi =O(h−1) on
elements K in the narrow band; hence, GK (e)=O(h) and �K (e)=O(h3/2). The jump [∇uh ·n]
being in O(h−1) on the narrow band, we obtain

1

2

4∑
i=1

( | fi |
�1,K �2,K �3,K

)1/2

‖[∇uh ·n]‖L2( fi ) =O(h−1/2)

hence �2K =O(h) for the O(h−2) tetrahedra in the narrow band and∑
K∈Th

�2K =O(h−1)

u=1

u=0

h

u=1

u=0

h

Figure 1. Illustration of the two extreme cases used in the asymptotic analysis.
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Similarly ‖∇uh‖2L2(K )
=O(h) for O(h−2) tetrahedra, which gives ‖∇uh‖2L2(�)

=O(h−1). For Case

II there are O(1) tetrahedra in the narrow band for which �2K =O(h−1), and we obtain the same
asymptotic behavior in O(h−1) for the global quantities

∑
K �2K and ‖∇uh‖2L2(�)

.
In both of these extreme cases, the ratio in the global adaptation criteria (10) is O(1) and cannot

be made arbitrary small by letting TOL→0. We will see from our numerical results that this
global ratio stabilizes after a number of mesher/solver iterations to a value relatively independent
from hmin but which is not guaranteed to be within the 25% range around TOL as prescribed by
(10). However, the situation is not as desperate with the local adaptation criteria (11). The local
adaptation criteria (11) can properly be enforced away from the surface S j , giving an appropriate
error control of the form ‖∇e‖L2(�′

i )
=O(TOL) for any open region �′

i strictly contained in a
regular component �i and not overlapping with the narrow bands of width O(hmin) around the
surfaces S j . For the elements K within the narrow bands, Case I gives lower and upper bounds
in O(hTOL2) in (11) while �2K =O(h). For Case II the lower and upper bounds in (11) are in
O(TOL2/h) while �2K =O(1/h) around the surfaces S j . It is impossible to let TOL→0 to control
the H1 error over these elements. Instead the adaptation criteria (11) is switched off along r3,K
and the size of the tetrahedra is controlled by hmin in these regions. At best the numerical scheme
used will guarantee that the L p error on the numerical solution is a function of hmin around the
S j , at least for one p�1. If H1(�′

i ) can be injected continuously in L p(�′
i ) for this same p, we

control the global error in L p(�) as a function of TOL and hmin. The above argument is of course
heuristic but this strategy based on the adaptation criteria (11) will turn out to be very efficient
for computing inviscid flows with evidences showing that the mechanisms identified are the ones
leading to very accurate results.

3. NUMERICAL RESULTS

Numerical results are presented for a 3D inviscid flow around a supersonic business jet provided
by Dassault Aviation. We first introduce the test case and then present how the solver/mesher
loop proceeds for a single set of the adaptation parameters TOL and hmin. Next we look at the
effect of varying these adaptation parameters on the quality of the solution, mesh characteristics,
etc. Finally, we compare the results obtained with our a posteriori estimator with those obtained
with the anisotropic a priori estimator introduced in [13]. In this section, we have replaced uh by
Mh to make explicit that the error estimators and the error on the solution are all computed using
the local Mach number Mh instead of any of the flow variables �h , (�u)h , etc. The a posteriori
error estimator �K in (11) is computed from the local Mach number as if it is a continuous P1
finite-element variable.

3.1. Test case

The same test case is used for all the results presented. It is a steady inviscid flow over a generic
supersonic business jet with a Mach number of 1.6 at infinity and an angle of attack of 3◦. Figure 2
shows the initial mesh and a closeup of the aircraft, colored by the local Mach number of the
flow. The Cartesian coordinate system has its origin located right on the back tip of the aircraft,
the x-axis in the streamwise direction pointing downstream, the y-axis in the spanwise direction
and the z-axis in the upward vertical direction. The business jet has a length of 37 units and is
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Figure 2. View of the initial mesh and initial solution (local Mach number).

included in a sphere of radius R=100 with the center at the origin. A cut plane through the origin
and perpendicular to the axis of the aircraft is included in the figure. The initial mesh is composed
of 2 273 750 tetrahedra and 392 823 vertices. The tetrahedra are nearly isotropic, with small cells
closer to the aircraft. The skin of the aircraft is meshed with triangles and is kept fixed during
mesh adaptation. These triangles are taken small enough not to interfere with the quality of the
solution, at least for the values of the mesh adaptation parameters used.

An initial solution is obtained on this initial mesh by starting from a uniform flow set to the
condition at infinity and by doing about 500 time steps. A local time-stepping strategy is used
to reach a steady solution in fewer time steps by enforcing a local CFL number of 0.8 on each
cell, below the critical value of 4.0 for the flow solver stability. The convergence of the solution
toward a steady solution is checked by doing another 500 time steps and comparing the solutions
‘with the eyes’. This is good enough to start our adaptation loop as we will do 500 time steps per
adaptation/resolution cycle and about 50–100 cycles for a total of 25 000–50 000 time steps for
reaching the final adapted solution.

Figure 3 shows one of the best solutions obtained with our mesh adaptation strategy. Details
on the numerical parameters used to compute this solution will be given in Section 3.3. For now,
we only mention that this solution has been obtained on a mesh with 6 928 342 tetrahedra and
1 193 575 vertices on a simple desktop computer with 2GB RAM in about 4.5 days of CPU time.
Unless otherwise stated, all the graphs showing the local Mach number presented in this paper are
based on a truncated scale, meaning that areas with a local Mach number above 1.64 are colored
in red whereas areas with a local Mach number below 1.54 are colored in blue. This has been done
to amplify contrasts and better show the various details of the flow on the figures. The local Mach
number usually stands between 1.1 and 2.1 with slight variations on the minimum and maximum
from simulation to simulation.

Several shock waves and rarefaction fans can be seen in the figure. One of the strongest shocks
is generated by the tip of the aircraft and can be seen as the leftmost passage from green to blue
in the figures. This shock is attached to the tip and has a perfect conical shape. This shock wave is
followed by a rarefaction fan induced by the curvature of the ‘cockpit’ (seen as a passage from blue
to green and then yellow in the figures), and where the flow accelerates. Behind this rarefaction
fan a weaker shock wave is generated at the wing/body junction (seen as passage from yellow to
green in the figures). These rarefaction fan and weaker shock are difficult to compute numerically
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Figure 3. View of the adapted solution (local Mach number) on x- and z-normal planes (top figure),
x- and y-normal planes (bottom figure).

and can be easily missed even with an adaptation procedure. Other shock waves are generated at
the leading edges of the wing tips and empennage, at the bump preceding the empennage and as
usual by the converging flows at the trailing edges of the wings, the empennage and the fuselage.
The waves easily propagate far from the aircraft and interact together, leading to a complex flow
with conflicting requirements in terms of anisotropic mesh adaptation.

3.2. Mesh adaptation/flow solution loop

We first present the evolution of the mesh and solution during the mesh adaptation/flow solution
loop for the strategy sketched in Section 2.3. The results presented in this section have been obtained
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for TOL=1.0 and hmin=0.1, doing 500 time steps with the flow solver between successive mesh
adaptations.

Figures 4 and 5 show a cut of the meshes and solutions after 1, 5, 10 and 20 iterations of the
mesher/solver loop. The cut is taken on the plane x=0, which is the vertical plane perpendicular
to the symmetry plane of the aircraft and passing through the back tip (the origin) of the airplane.
Clearly, the mesh is progressively refined and stretched close to the shock waves and coarsens
away from these. Strong shocks are rapidly caught by the adaptive method, while weaker shocks
take more mesher/solver iterations. The relatively strong conical shock created at the tip of the
aircraft is focused between iterations 5 and 20. The weaker shock generated by the wing/body
junction is not yet seen after 20 iterations. It is progressively refined between iterations 20 and
60, with the adapted region growing upward from the shock area below the aircraft. This weak
wing/body junction shock can be seen on the final adapted mesh in Figure 9 (middle) after 100
mesher/solver iterations.

Table I shows the evolution of the mesh statistics with respect to the mesher/solver iterations.
We can see a global decrease in the number of vertices and tetrahedra during the first 5 iterations
followed by a progressive increase in these numbers toward a plateau corresponding to a converged
adapted mesh (converged in a statistical sense). This results from the fact that the initial mesh
is composed of a large number of isotropic cells. This mesh is fine enough to catch the gross
features of the inviscid flow as can be seen in Figure 2, at least enough features to guide the

Figure 4. Meshes after 1 (top left), 5 (top right), 10 (bottom left) and 20 (bottom right)
iterations of the meshing/solution loop.
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Figure 5. Solutions after 1 (top left), 5 (top right), 10 (bottom left) and 20 (bottom right)
iterations of the meshing/solution loop.

Table I. Mesh statistics as a function of the mesher/solver iteration for TOL=1.0 and hmin=0.1.

Iteration 0 1 5 10 20 50 100

No. nodes 392 823 221 306 107 045 122 396 156 450 183 158 194 533
No. tetrahedra 2 273 750 1 230 186 533 649 622 624 820 808 975 627 1 041 496
Average �1,K 2.56 2.35 2.32 2.61 3.30 4.09 4.62
Average �3,K 0.938 0.746 0.513 0.382 0.267 0.211 0.191

Average �1,K
�3,K

2.9 3.6 5.7 9.9 22.7 40.1 51.9

maxK
�1,K
�3,K

182.9 175.8 174.6 176.6 395.9 1507.1 1506.5
minK vol(K ) 4.91e−8 5.57e−8 6.48e−8 8.85e−8 8.96e−8 4.99e−8 4.12e−8
maxK vol(K ) 8.37e1 5.33e2 2.42e4 5.98e4 5.56e4 5.45e4 7.76e4

early adaptation process. The initial mesh being uniformly fine, some of the regions (such as those
of constant flow) are immediately required to coarsen. Other regions are refined and eventually
stretched but this usually takes more solver/mesher iterations, hence this initial decrease is followed
by an increase in the number of nodes and cells. The passage from an initial isotropic mesh to
an adapted anisotropic mesh can be seen by looking at the average �1,K that goes up with the
iterations whereas the average �3,K goes down. We recall that �1,K corresponds to the size of the
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tetrahedra K along its direction r1,K of maximal thickness and �3,K to the size along its direction
r3,K of minimal thickness. The singular values �3,K being divided by 5 on the average from
the initial to the final adapted meshes, we may expect that an equivalent gain in accuracy using
only isotropic splitting of the cells would be achieved by dividing the cell size by 5 in all three
directions. The resulting isotropic mesh would then contain 53=125 times as many cells or nodes
as the initial mesh for the same accuracy as with our final anisotropic mesh. Note that our final
anisotropic mesh contains less nodes than in the initial mesh. On the average, the tetrahedra K
are 17 times more elongated in the final adapted mesh than the initial mesh. In comparison, the
maximal elongation maxK �1,K /�3,K grows only by a factor of 8. A final average ratio �1,K /�3,K
of 51.9 indicates that the number of cells has to be multiplied by nearly 502=2500 to transform
the final adapted anisotropic mesh into an isotropic mesh guaranteeing the same accuracy on the
solution. The minimal volume over all the cells K does not vary much during adaptation. For
cells of minimal volume the decrease of �3,K is most likely compensated by an increase in �1,K .
The maximal volume grows by 3 orders of magnitude from the initial to the final meshes. This
maximal volume corresponds to large cells that appear in the regions where the flow is constant
but that were not present in the initial mesh.

Figure 6 shows the evolution of the ratio (
∑

K∈Th
�2K )1/2/‖∇Mh‖L2(�) that appears in the

global adaptation criteria (10) for TOL=0.5, 1.0 and 2.0. For now we only comment on the
curve for TOL=1.0. The other curves will be commented on Section 3.3. This ratio stabilizes in
less than 20 mesher/solver iterations. The asymptotic ratio is 0.99, a value well within the 25%
limit required by the global criteria (10). The local criteria (11) is thus efficient at controlling the
global ratio in spite of a relatively large number of tetrahedra where the hmin condition spoils the
adaptation process. Figure 7 gives a glimpse on these tetrahedra where �3,K has been replaced by
hmin (colored in red), at least for those tetrahedra in the vicinity of the plane x=0 normal to the
axis of the aircraft. Clearly, the hmin condition applies in the shocks where the flow variables jump.
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Figure 6. Ratio of the error estimator over ‖∇Mh‖L2(�) (see Equation (10)) as a function of the
mesher/solver iterations for hmin=0.1 and various TOL.
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Figure 7. Perspective view of the mesh and elements K subject to the hmin criteria (TOL=1.0, hmin=0.1).

This was confirmed by looking at cuts with planes in several other directions and for other values
of TOL and hmin (not shown here). We recover the behavior predicted by the asymptotic analysis
of Section 2.4. At shocks, �3,K can never be small enough so that condition (11) is satisfied. Many
elements K near the body of the aircraft are also subject to the hmin condition. Small elements may
be required at the body because of the curvature of the geometry. Note that we do not have much
control on the cell size along the aircraft surface because of the frozen skin mesh, but reducing
hmin results in a smaller number of cells near the body subject to the hmin condition as we would
expect.

Looking at the statistics of Table I and visualizing the mesh and solution from iteration to
iteration as in Figures 4 and 5, one can see that we reach the ‘algorithmic’ convergence of the
mesh and solution. We say ‘algorithmic’ convergence as mesh adaptation being a discrete process,
one can never reach the exact same mesh from one iteration to the next. In the following sections,
these criteria for algorithmic convergence will be used to decide whether enough mesher/solver
iterations have been done.

3.3. Impact of the adaptation parameters TOL and hmin

We first look at the effect of varying the parameter TOL appearing in the adaptation criteria (10) or
(11). The minimal size hmin is kept constant and equal to 0.1. The parameter TOL is taken equal
to 2.0, 1.0 and 0.5. The adaptation cycles for these three cases are started from the same initial
mesh presented in Section 3.1. The results presented are for 50 mesher/solver iterations except
when TOL=1.0 where we preferred to do 100 cycles to reach the algorithmic convergence of the
mesh.

Figures 8 and 9 present the final adapted meshes and solutions for three values of TOL on the
cut plane y=0 and x=0, respectively. Clearly, the solution is improved while decreasing TOL.
For TOL=2.0, the conical shock created at the tip of the aircraft is meshed and seen close to
the tip but rapidly fades out far from the aircraft. Several weaker shocks are missed such as the
one generated by the wing/body junction, the one at the aircraft trailing edge and many shocks
below the aircraft. In spite of the small number of nodes and cells for TOL=2.0 (see Table II),
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Figure 8. Mesh and local Mach number on the cut plane y=0: TOL=2.0 (top),
TOL=1.0 (middle) and TOL=0.5 (bottom).

it is a surprise to see how well the flow features are resolved in the vicinity of the empennage
and its upstream bump. These observations are confirmed by the graph of Figure 10 where the
local Mach number is plotted as a function of the x-coordinates along a cut line (compare the blue
curve with the red one). This cut line is on the symmetry plane of the aircraft and can be seen as
a red segment on the upper figure.
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Figure 9. Mesh and local Mach number on the cut plane x=0: TOL=2.0 (top),
TOL=1.0 (middle) and TOL=0.5 (bottom).

Decreasing TOL from 2.0 to 1.0, the number of nodes is multiplied almost by 4 and the number
of tetrahedra by 5. We have not yet reached the asymptotic behavior where dividing TOL by 2
results in 8 times as many nodes or cells. The solution has greatly improved though. All the shock
and rarefaction waves are now caught and meshed. This can be seen in Figures 8 and 9 but also
by comparing the green and red curves on the graph of Figure 10. Compared with the curve for
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Table II. Mesh statistics for hmin=0.1 and various TOL after 50 mesher/solver iterations.

TOL 0.5 1.0 2.0

No. nodes 1 193 575 194 533 50 549
No. tetrahedra 6 928 342 1 041 496 193 828
Average �1,K 1.79 4.09 4.34
Average �3,K 0.104 0.211 0.634

Average
�1,K
�3,K

22.7 40.1 17.9

maxK
�1,K
�3,K

661.2 1507.1 346.8
minK vol(K ) 7.71e−8 4.99e−8 7.83e−8
maxK vol(K ) 4.78e4 5.45e4 7.11e4
‖∇Mh‖L2(�) 18.53 18.59 11.65

(
∑

K∈Th
�2K )1/2/‖∇Mh‖L2(�) 0.784 0.990 1.196
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Figure 10. Plot of the local Mach number as a function of the x-coordinate on the line (x, y, z)=(t,0,5)
for t ∈[−32,10]—effect of varying TOL.
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our most accurate solution (the red curve for TOL=0.5 on this graph), the main differences are
in the local maxima and minima that are not as high or low, respectively, for TOL=1.0. If we
keep decreasing TOL from 1.0 to 0.5, the number of nodes is multiplied by 6 and the number of
tetrahedra by 7. We are getting closer to the asymptotic behavior of these numbers with respect
to TOL, if ever it can be achieved because of the application of the hmin condition. The general
aspect of the solution is the same as for TOL=1.0. Small differences can be seen in the wake
and below the aircraft in the back. It is not clear what is the exact mechanism behind these minor
differences, especially for the wake that is in principle not well or at best only partially described
by the Euler equations. Aside from these small differences, we are relatively convinced that if
we keep decreasing TOL the solution would look the same to the eyes, both for iso-color plots
and graphs generated from cut lines. Note that doing simulations for TOL<0.5 (with hmin=0.1)
would require more than the 2GB of RAM available on a 32-bit system.

In Table II we compare various mesh statistics for three values of the parameter TOL. While
discussing the number of nodes or cells with respect to TOL, we noted that the asymptotic behavior
starts to be apparent for TOL�1.0 in our simulations. This is confirmed by the average �1,K and
�3,K that are approximately halved while going from TOL=1.0 to 0.5, figures that are consistent
with a number of cells almost multiplied by 7. The tetrahedra near shock waves have a thick-
ness of hmin across the shocks; hence the number of these tetrahedra is controlled by hmin as
well. As hmin did not vary going from TOL=1.0 to 0.5, we should only expect to increase the
number of cells or nodes by a factor smaller than 8. Note that if we keep decreasing TOL, we
should consider decreasing hmin as well. Indeed the average �3,K equals 0.104 for TOL=0.5, and
hmin=0.1 is about to limit �3,K from below. The average tetrahedra aspect ratio, i.e. the average
ratio �1,K /�3,K increases while decreasing TOL down to a value where this ratio starts decreasing.
As the average �3,K approaches the lower bound hmin=0.1, more and more tetrahedra are such
that �3,K =0.1 whereas at the same time �1,K and �2,K are both getting smaller compared to results
obtained with larger TOL. The anisotropy ratio is then limited by the value of hmin. This calls
again for a reduction of hmin. All the other statistics presented seem to be independent to some
extent from TOL. We guess from its values for TOL�1.0 that ‖∇Mh‖L2(�) is equal to 18.5 with
three significant figures. Looking at Figure 6, we see that the ratio (

∑
K∈Th

�2K )1/2/‖∇Mh‖L2(�)

that appears in the global adaptation criteria (10) converges to an asymptotic value. The asymp-
totic values for TOL=0.5, 1.0 and 2.0 are given in Table II. As expected from the asymptotic
analysis of Section 2.4, the asymptotic value obtained through mesh adaptation is not neces-
sarily in the interval [0.75TOL,1.25TOL] but it converges to a value controlled by both TOL
and hmin.

We next look at the effect of varying the minimal size hmin while keeping the adaptation
parameter TOL constant. Our test cases will be done for TOL=1.0 and hmin=0.01, 0.1 and 1.0.
We proceed for these three test cases as for the test cases for studying the effect of TOL except
that the adaptation cycle for hmin=0.01 was initiated from the final adapted mesh and solution
for hmin=0.1.

Figures 11 and 12 present the final adapted meshes and solutions for three values of hmin on the
cut plane y=0 and x=0, respectively. Obviously, taking hmin too large for a given TOL negatively
affects the accuracy of the solution. Shock waves simply cannot be refined. Even if the number
of nodes and cells are about the same as for TOL=2.0 and hmin=0.1 (see Tables II and III),
the solution is much worse with a large hmin and medium TOL than with a medium hmin and
large TOL. Now decreasing hmin, we see that the solution improves but only up to a point where
TOL is the main parameter controlling the accuracy. For example, the meshes and solutions do
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Figure 11. Mesh and local Mach number on the cut plane y=0: hmin=1.0 (top),
hmin=0.1 (middle) and hmin=0.01 (bottom).

not change much while decreasing hmin from 0.1 to 0.01, as seen in Figures 11 and 12. Regions
with a smooth solution are meshed in a statistically identical way, in terms of both cell density and
stretching, simply because the mesh adaptation is exclusively controlled by the local adaptation
criteria (11) there. Only a blow-up of the mesh close to shock waves shows that the tetrahedra are
about 10 times thinner along the normal to the shock for hmin=0.01 compared with hmin=0.1.
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Figure 12. Mesh and local Mach number on the cut plane x=0: hmin=1.0 (top),
hmin=0.1 (middle) and hmin=0.01 (bottom).

These thinner cells improve the solution in shocks, with steeper slopes of the numerical solution
(compare the blue and green graphs in Figure 13). The improvement is otherwise limited. Both
graphs follow each other relatively closely but are consistently off the graph for TOL=0.5 in
some regions where the solution is smooth. The solution for TOL=0.5 is certainly better in these
regions because the adaptation criteria (11) works full fledgedly there.
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Table III. Mesh statistics for TOL=1.0 and various hmin after 50 mesher/solver iterations.

hmin 0.01 0.1 1.0

No. nodes 1 791 112 194 533 48 668
No. tetrahedra 10 451 960 1 041 496 182 360
Average �1,K 1.76 4.09 6.19
Average �3,K 0.0236 0.211 0.956

Average �1,K
�3,K

216.1 40.1 8.1

maxK
�1,K
�3,K

17659.1 1507.1 408.2
minK vol(K ) 5.03e−8 4.99e−8 1.21e−7
maxK vol(K ) 6.02e4 5.45e4 5.54e4
‖∇Mh‖L2(�) 64.58 18.59 5.54

(
∑

K∈Th
�2K )1/2/‖∇Mh‖L2(�) 1.137 0.990 1.966
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 1.6
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Figure 13. Plot of the local Mach number as a function of the x-coordinate on the line (x, y, z)=(t,0,5)
for t ∈[−32,10]—effect of varying hmin for TOL=1.0. Comparison of these solutions with our most

accurate solution obtained with TOL=0.5 and hmin=0.1.
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In Table III we compare various mesh statistics for three values of the parameter hmin. Most
statistics depend strongly on hmin. The norm ‖∇Mh‖L2(�) behaves in O(h−1/2), which implies that

dividing hmin by 10 results in ‖∇Mh‖L2(�) being multiplied by
√
10≈3. This is what we observed

numerically. The ratio (
∑

K∈Th
�2K )1/2/‖∇Mh‖L2(�) is O(1). Again this matches numerical exper-

iments. Going from a hmin of 0.1 to 0.01, the number of nodes and cells are roughly multiplied
by 10. As mentioned above, most new nodes are added around the solution discontinuities. Asymp-
totically, the number of nodes (respectively cells) around discontinuities dominates the total number
of nodes (respectively cells) of the mesh, hence the behavior in O(h−1) for these total numbers.
The same reasoning applies to the average �3,K that is asymptotically dominated by the tetrahedra
of thickness hmin and that is roughly divided by 10 while going from a hmin of 0.1 to 0.01. On
the other hand, �1,K is controlled by criteria (11), hence by TOL, and does not vary significantly
with hmin. The combination of these two facts makes that the average or maximal stretching of
the tetrahedra must grow with a decreasing hmin. Again this is what we observed experimentally.
The maximal and minimal volumes of the cells are not much affected by the value of hmin.

3.4. Comparison with a priori error estimators

We compare meshes and solutions obtained with our a posteriori H1(�)-error estimator with
the ones obtained with the a priori L p(�)-error estimators introduced in [13]. The idea is to
calculate a metric tensor M=M(P) as in Equation (12) with eigenvalues �i properly scaled so
as to represent a mesh Th minimizing the interpolation error ‖u−Rhu‖L p(�) for a given number
of nodes. Here Rh denotes the usual P1 Lagrange interpolation operator over the mesh Th . This
Lagrange interpolant is well defined in functions u that are least in C0(�̄), in particular functions
that are in H2(�) in dimension 3. As for our a posteriori estimator, this requires some extension
of the a priori error estimators to act on piecewise regular functions and handle shock waves in
inviscid flows.

We show only results for p=1, which corresponds to the most sensitive norm. A solution to
improve accuracy in regions where the solution is not smooth consists in using L p norms with
larger values of p. Figure 14 shows the meshes and solutions on the cut plane x=0 for two
test cases, one with 182 013 vertices and 976 292 tetrahedra that compares with the results for
TOL=1.0 in Figure 9 and the other with 1 096 446 vertices and 6 462 350 tetrahedra that compares
with the results for TOL=0.5 in the same figure. The number of nodes and cells in the respective
test cases for the a posteriori estimator are given in Table II. The results for the a priori estimators
have been computed targeting the same number of nodes as for the a posteriori estimator. The
exact number of nodes are never achievable in practice because of the discrete nature of mesh
adaptation algorithms. We imposed a hmin of 0.1 for the test case at the top of Figure 14 while
no hmin was imposed for the test case at the bottom. A condition on hmin is not required with this
L1-error estimator, because of the appropriate scaling of the eigenvalues in the metric tensor M.
Comparing the figures, one concludes that both approaches are capable of producing the main
features of this supersonic flow.

4. CONCLUSIONS

We have applied an a posteriori error estimator for controlling a metric-based anisotropic mesh
adaptation software to improve numerical solutions for 3D inviscid flows around a supersonic
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Figure 14. Mesh and local Mach number on the cut plane x=0 obtained using an
a priori L1-error estimator: 182 013 vertices and 976 292 tetrahedra (top), 1 096 446

vertices and 6 462 350 tetrahedra (bottom).

aircraft. The results turn out to be spectacular in spite of the fact that the use of these error estimators
cannot be fully justified for solutions with shock and contact discontinuities. For instance, the
a posteriori error estimator used is funded from a theoretical standpoint for elliptic problems with
solutions in H1+�(�) for some �>0. For solutions to the Euler equations with shocks we are
certainly far from this hypothesis.

We have identified a strategy based on the imposition of a minimal edge length hmin over the
mesh to extend the applicability of our a posteriori error estimator to solutions with discontinuities,
at least from a practical standpoint. In regions of the domain � where the solution is regular, the
mesh adaptation is controlled by a local adaptation criteria based on the parameter TOL. The local
adaptation criteria equidistribute the H1-error over the tetrahedra in these regions of the domain.
Around solution discontinuities, we showed through an asymptotic analysis in hmin that the local
adaptation criteria should fail in the direction normal to the shock. As a remedy we proposed to
replace the local adaptation criteria by the imposition of a minimal grid size hmin but only in
the direction normal to the discontinuity. We verified that the asymptotic behavior is observed in
numerical experiments by conducting test cases with three different values of hmin for the same
value of TOL. This gave some hints on the selection of consistent values of TOL and hmin to
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guarantee the efficiency of the anisotropic mesh adaptation. Basically, hmin must be small enough
for a given TOL so that the hmin condition applies only at discontinuities but not too small so that
most tetrahedra are thrown at the discontinuities, increasing amazingly the computational cost for a
marginal gain in accuracy. Finally, we verified experimentally that reducing the parameter TOL can
improve the accuracy of the solutions up to the point where we can compute mesh-independent 3D
inviscid compressible flows over a full aircraft using a desktop PC or a good laptop in a few days.

We compared the solutions obtained with our a posteriori error estimator to those obtained
with a priori estimators. So far most of the attempts at anisotropic mesh adaptation for inviscid
compressible flows were done with a priori estimators. Except for minor differences seen on
meshes with fewer nodes, both approaches gave consistently good results. It is comforting to see
that an a posteriori error estimator can be reliably used for such applications. More analysis is
required though to do an in-depth comparison of the two approaches and better evaluate the merit
of each error estimation strategy.
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27. Houston P, Mackenzie JA, Süli E, Warnecke G. A posteriori error analysis for numerical approximations of

Friedrichs systems. Numerische Mathematik 1999; 82(3):433–470.
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